Differentially Private Dropout

نویسندگان

  • Beyza Ermis
  • Ali Taylan Cemgil
چکیده

Large data collections required for the training of neural networks often contain sensitive information such as the medical histories of patients, and the privacy of the training data must be preserved. In this paper, we introduce a dropout technique that provides an elegant Bayesian interpretation to dropout, and show that the intrinsic noise added, with the primary goal of regularization, can be exploited to obtain a degree of differential privacy. The iterative nature of training neural networks presents a challenge for privacy-preserving estimation since multiple iterations increase the amount of noise added. We overcome this by using a relaxed notion of differential privacy, called concentrated differential privacy, which provides tighter estimates on the overall privacy loss. We demonstrate the accuracy of our privacy-preserving dropout algorithm on benchmark datasets.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Differentially Private Variational Dropout

Deep neural networks with their large number of parameters are highly flexible learning systems. The high flexibility in such networks brings with some serious problems such as overfitting, and regularization is used to address this problem. A currently popular and effective regularization technique for controlling the overfitting is dropout. Often, large data collections required for neural ne...

متن کامل

To Drop or Not to Drop: Robustness, Consistency and Differential Privacy Properties of Dropout

Training deep belief networks (DBNs) requires optimizing a non-convex function with an extremely large number of parameters. Naturally, existing gradient descent (GD) based methods are prone to arbitrarily poor local minima. In this paper, we rigorously show that such local minima can be avoided (upto an approximation error) by using the dropout technique, a widely used heuristic in this domain...

متن کامل

Differentially Private Local Electricity Markets

Privacy-preserving electricity markets have a key role in steering customers towards participation in local electricity markets by guarantying to protect their sensitive information. Moreover, these markets make it possible to statically release and share the market outputs for social good. This paper aims to design a market for local energy communities by implementing Differential Privacy (DP)...

متن کامل

Adolescent Health and High School Dropout: A Prospective Cohort Study of 9000 Norwegian Adolescents (The Young-HUNT)

BACKGROUND High school dropout is of major concern in the western world. Our aims were to estimate the risk of school dropout in adolescents following chronic somatic disease, somatic symptoms, psychological distress, concentration difficulties, insomnia or overweight and to assess to which extent the family contributes to the association between health and school dropout. METHODS A populatio...

متن کامل

Dropout Prediction and Reduction in Distance Education Courses with the Learning Analytics Multitrail Approach

Distance Education courses are present in large number of educational institutions. Virtual Learning Environments development contributes to this wide adoption of Distance Education modality and allows new pedagogical methodologies. However, dropout rates observed in these courses are very expressive, both in public and private educational institutions. This paper presents a Learning Analytics ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1712.01665  شماره 

صفحات  -

تاریخ انتشار 2017